

Compliance Department - EMC Test Report

Report reference: BE2019176

Laboratory:

IDNEO Technologies, S.A.U. Polígon Industrial Can Mitjans s/n. 08232 Viladecavalls - Barcelona (Spain) Telephone: +34 937 008 549 FAX: +34 937 332 718 www.idneo.com

FORM0144 / Revision 2

Requested by:

Lazer Lamps

Unit 1&2, Harlow Mill Business Centre, Riverway, Harlow, CM20 2FD, UK Represented by:

Eduard Grigoras Telephone: +44 (0) 1992 677374

Project

Equipment Under Test (EUT):	Utility - 25
EMC Test plan / Standard:	CISPR 25:2008

Authorized signatories:

Edited by:	Revised and approved by:
Pedro Moreno	David Ortiz
Compliance Engineer	Compliance Manager

Dates and Testing site

EUT reception	2019-06-14	
Initial test date:	2019-07-09	
Final test date:	2019-07-18	
Testing site:	Compliance department – IDNEO Technologies	

Sample References:

Sample #1.	Model: Utility – 25
Sample #1:	Manufacturer: Lazer Lamps

Revision history:

Document Reference	Date	Description
V01.00-ENG	22/07/2019	Document delivery

INDEX

1	Intr	Introduction4		
2	Sur	nmary Results	4	
3	Ref	erenced documents	4	
4	Ger	neral conditions	4	
5	Sys	tem description and validation requirements	5	
	5.1	Equipment Under Test (EUT)	5	
	5.2	Pin-out	6	
	5.3	Operational modes	6	
	5.4	Matrix of samples under test	6	
	5.5	Details about measurement uncertainty	6	
6	Tes	t Results	7	
	6.1	Conducted emissions (CE)	7	
	6.2	Radiated emissions (RE)1	6	
7	Εqι	ipments3	5	
8	Glo	ssary3	6	

1 **Introduction**

This document collects EMC tests results for the project Utility - 25, according to standard/test validation plan: CISPR 25:2008.

Summary Results 2

Test CISPR 25	Results
Conducted emissions (CE)	PASS
Radiated emissions (RE)	PASS

Table 1. Summary results.

Referenced documents 3

Document Reference	Version	Document
CISPR 25	2008	Vehicles, boats and internal combustion engines – Radio disturbance characteristics – Limits and methods of measurement for the protection of on-board receivers
Table 2 Referenced documents		

Table 2. Referenced documents.

General conditions 4

Unless otherwise specifications, tests have been done at following conditions:

Supply voltage:	13.0 ± 1.0 V _{DC}	26.0 ± 2.0 V _{DC}
Temperature	22 °C :	±3 ℃.
Humidity	30% - 70%	

Table 3. General conditions.

5 System description and validation requirements

5.1 Equipment Under Test (EUT)

Figure 1. EUT – Utility - 25. Front view

Figure 2. EUT – Utility - 25. Rear view

5.2 Pin-out

Pin	Signal description
1	VCC
2	GND

Table 4. Pin-out information.

5.3 Operational modes

According to the agreement with the costumer, the following operating modes have been tested:

5.3.1 12V mode

- The Utility – 25 lamp powered by battery of 12VDC and power supply (with 13.5VDC) in parallel.

5.3.2 24V mode

- The Utility – 25 lamp powered by two batteries of 12VDC each one and power supply (with 27VDC) in parallel.

5.4 Matrix of samples under test

Test	Sample
	#1
Conducted emissions (CE)	Х
Radiated emissions (RE)	Х

 Table 5. Matrix of samples under test for 12V.

5.5 Details about measurement uncertainty

In case of measurement results close to the limit, there is the possibility, that due to the measurement uncertainty $Ux = k * \sigma t$ ($\sigma t = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2}$ standard deviation of the total accumulated error), at a confidence level of 95% (k =2), the limits are indeed exceeded.

Measurement uncertainties calculation is available at Customer's request.

6 Test Results

6.1 Conducted emissions (CE)

6.1.1 Test purpose

This test is intended to check that radio frequency conducted emissions are below the set limit.

6.1.2 Test Information

Test Site	SAR 1
Test Date	2019-07-09
Temperature	23°C
Humidity	43%
Test Engineer	Pedro Moreno
Harness length	0.2 m
Operation Mode 1	12V
Operation Mode 2	24V

Table 6. CE Test – CISPR 25. Test Information.

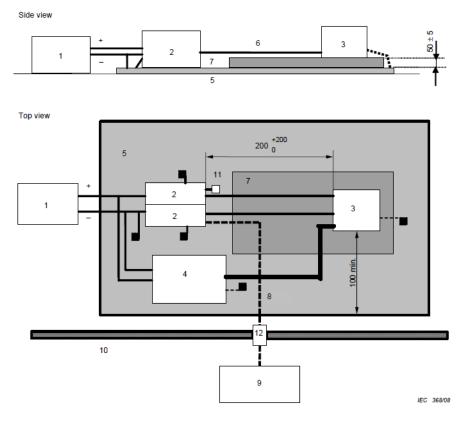
6.1.3 Limit Line

All emissions limits must be bellow limits defined for (Class 5 applied to 12V mode and Class 4 applied to 24V mode):

					Le	vels in d	Β (μV)				
Service / Band	Frequency	Class 1		Class 2		Class 3		Class 4		Class 5	
	MHz	Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak
BROADCAST											
LW	0,15 - 0,30	110	97	100	87	90	77	80	67	70	57
MW	0,53 - 1,8	86	73	78	65	70	57	62	49	54	41
SW	5,9 - 6,2	77	64	71	58	65	52	59	46	53	40
FM	76 - 108	62	49	56	43	50	37	44	31	38	25
TV Band I	41 - 88	58	-	52	-	46	-	40	-	34	-
MOBILE SERVICES											
СВ	26 - 28	68	55	62	49	56	43	50	37	44	31
VHF	30 - 54	68	55	62	49	56	43	50	37	44	31
VHF	68 - 87	62	49	56	43	50	37	44	31	38	25

Table 7. CE Test – CISPR 25. Limits Lines for Peak and Quasi-Peak detector.

	Frequency		Levels in dB(µV)								
Service / Band	MHz	Class 1	Class 2	Class 3	Class 4	Class 5					
	IVII 12	AVG	AVG	AVG	AVG	AVG					
BROADO	AST										
LW	0,15 - 0,30	90	80	70	60	50					
MW	0,53 - 1,8	66	58	50	42	34					
SW	5,9 - 6,2	57	51	45	39	33					
FM	76 - 108	42	36	30	24	18					
TV Band I	41 - 88	48	42	36	30	24					
MOBILE SE	RVICES										
СВ	26 - 28	48	42	36	30	24					
VHF	30 - 54	48	42	36	30	24					
VHF	68 - 87	42	36	30	24	18					


 Table 8. CE Test – CISPR 25. Limits Lines for Average detector.

6.1.4 Measurements parameters

Service / Free	quency range	Pea	k detectio	on	Quas	si-peak dete	ction	Aver	age deteo	tion
MHz		BW at -6 dB	Step size	Dwell time	BW at -6 dB	Step size	Dwell time	BW at -6 dB	Step size	Dwell time
AM broadcast and mobile services	0,15 - 30	9 kHz	5 kHz	50 ms	9 kHz	5 kHz	1 s	9 kHz	5 kHz	50 ms
FM broadcast	76 - 108									
Mobile services	30 to 1 000									
TV Band I	41 – 88	120 kHz	50 kHz	5 ms	120 kHz	50 kHz	1 s	120 kHz	50 kHz	5 ms
TV Band Ⅲ	174 – 230									
TV Band IV/V	470 – 890									
DAB	171 - 245									
DTTV	470 - 770	120 kHz	50 kHz	5 ms	Does not apply	Does not apply	Does not apply	120 kHz	50 kHz	5 ms
Mobile service	1 000 - 2 500	120 kHz	50 kHz	5 ms	Does not apply	Does not apply	Does not apply	120 kHz	50 kHz	5 ms
GPS L1 civil	1 567 – 1 583	Does not apply	Does not apply	Does not apply	Does not apply	Does not apply	Does not apply	9 kHz	5 kHz	5 ms
	missions gene ncreased up to				notors with	out an elec	tronic cont	rol unit, tł	ne maxim	um step

 Table 9. CE Test – CISPR 25. Measurement parameters.

6.1.5 Test Setup

Key

- 1 Power supply (may be placed on the ground plane)
- 2 Artificial network
- 3 EUT (housing grounded if required in test plan)
- 4 Load simulator (metallic casing grounded if required in test 10 Shielded enclosure
- plan) 5 Ground plane
- 6 Power supply lines

9 Measuring instrument

7 Low relative permittivity support ($\epsilon_r\!\!\le 1,4)$

8 High-quality coaxial cable e.g. double-shielded (50 Ω)

- 11 50 Ω load
- 12 Bulkhead connector

NOTE The EUT housing ground lead, when required in the test plan, should not be longer than 150 mm.

Figure 3. CE Test – CISPR 25. Schematic Test Setup.

Figure 4. CE Test – CISPR 25. Test Setup for 12V Mode.

Figure 5. CE Test – CISPR 25. Test Setup for 24V Mode.

6.1.6 Test Results

Sample	Operational	Frequency Range	Application	Result			
•	mode	[MHz]	Point	PK	QPK	AVG	
	12 V (Class 5)	0.15 – 108	VCC	PASS	PASS	PASS	
#1	12 V (Class 5)	0.15 - 106	GND	PASS	PASS	PASS	
#1	24 V (Class 4)	0.15 – 108	VCC	PASS	PASS	PASS	
	24 V (Class 4)	0.15 - 108	GND	PASS	PASS	PASS	

Table 10. RE Test. Test Results. Sample #1.

6.1.6.1 Ambient noise measurements – 12 V Mode

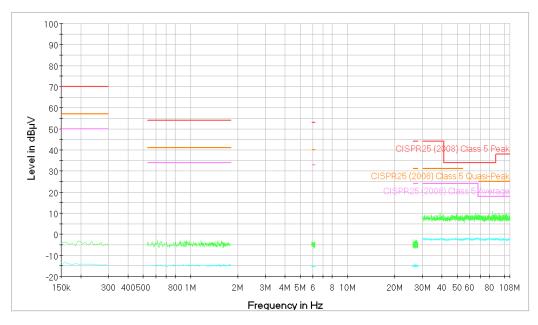


Figure 6. Ambient measurement. GND. 12V Mode. Peak and Average measurements.

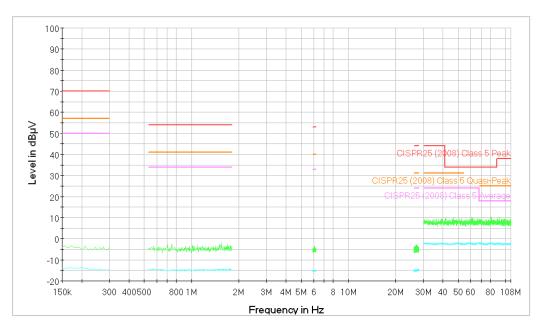


Figure 7. Ambient measurement. VCC. 12V Mode. Peak and Average measurements.

6.1.6.2 Tests Graphs. Sample #1. 12V Mode

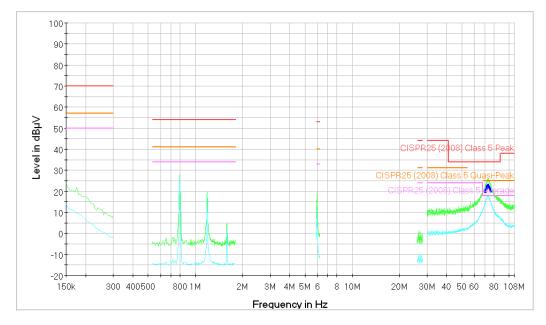


Figure 8. Test measurement. GND. 12V Mode. Peak, Quasi-Peak and Average measurements.

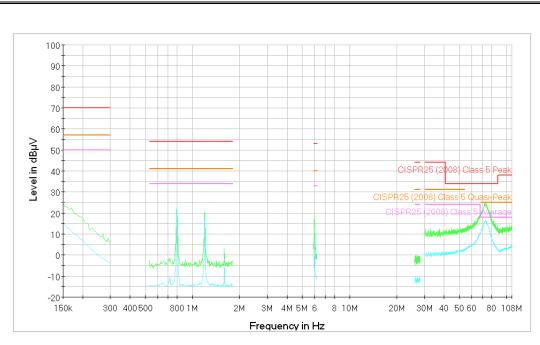


Figure 9. Test measurement. VCC. 12V Mode. Peak and Average measurements.

6.1.6.3 Ambient noise measurements – 24 V Mode

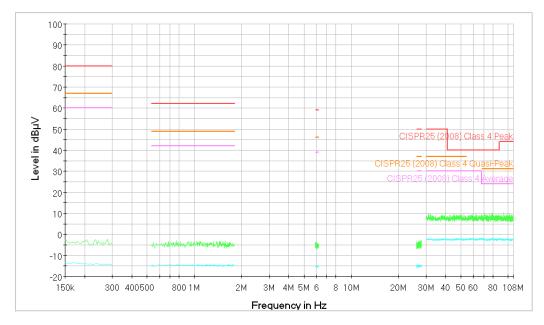


Figure 10. Ambient measurement. GND. 24V Mode. Peak and Average measurements.

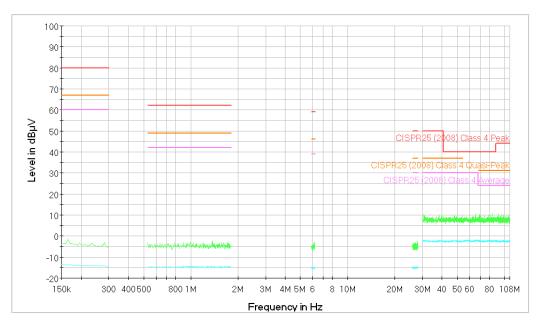


Figure 11. Ambient measurement. VCC. 24V Mode. Peak and Average measurements.

6.1.6.4 Tests Graphs. Sample #1. 24V Mode



Figure 12. Test measurement. GND. 24V Mode. Peak and Average measurements.

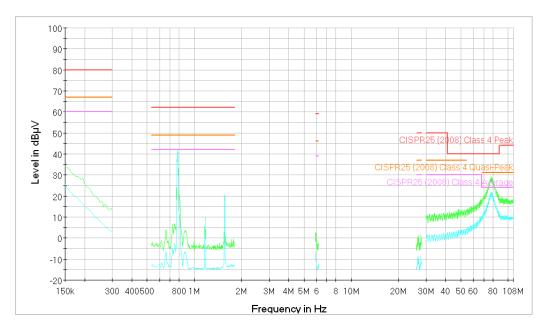


Figure 13. Test measurement. VCC. 24V Mode. Peak and Average measurements.

6.2 Radiated emissions (RE)

6.2.1 Test purpose

This test is intended to check that radio frequency radiated emissions are below the set limit.

6.2.2 Test Information

SAR 1			
2019-07-10 and 2019-07-18			
24°C			
54%			
Pedro Moreno			
1 m			
1.7 m			
12V (Class 5 applied)			
24V (Class 4 applied)			

Table 11. RE Test – CISPR 25. Test Information.

6.2.3 Limit Lines

All emissions limits must be bellow limits defined for (Mode 12V Class 5, Mode 24V Class 4):

						Levels in	dB(µV/m)				
Service / Band	Frequency	Cla	ss 1	Cla	ss 2	Cla	ss 3	Cla	ss 4	Cla	ss 5
Control / Duna	MHz	Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak	Peak	Quasi- peak
BROADC	AST										
LW	0,15 - 0,30	86	73	76	63	66	53	56	43	46	33
MW	0,53 - 1,8	72	59	64	51	56	43	48	35	40	27
SW	5,9 - 6,2	64	51	58	45	52	39	46	33	40	27
FM	76 - 108	62	49	56	43	50	37	44	31	38	25
TV Band I	41 - 88	52	-	46	-	40	-	34	-	28	-
TV Band III	174 - 230	56	-	50	-	44	-	38	-	32	-
DAB III	171 - 245	50	-	44	-	38	-	32	-	26	-
TV Band IV/	468 - 944	65	-	59	-	53	-	47	-	41	-
DTTV	470 - 770	69	-	63	-	57	-	51	-	45	-
DAB L band	1447 - 1494	52	-	46	-	40	-	34	-	28	-
SDARS	2320 - 2345	58	-	52	-	46	-	40	-	34	-
MOBILE SERVICES											
СВ	26 - 28	64	51	58	45	52	39	46	33	40	27
VHF	30 - 54	64	51	58	45	52	39	46	33	40	27
VHF	68 - 87	59	46	53	40	47	34	41	28	35	22
VHF	142 -175	59	46	53	40	47	34	41	28	35	22
Analogue UHF	380 - 512	62	49	56	43	50	37	44	31	38	25
RKE	300 - 330	56	-	50	-	44	-	38	-	32	-
RKE	420 - 450	56	-	50	-	44	-	38	-	32	-
Analogue UHF	820 - 960	68	55	62	49	56	43	50	37	44	31
GSM 800	860 - 895	68	-	62	-	56	-	50	-	44	-
EGSM/GSM 900	925 - 960	68	-	62	-	56	-	50	-	44	-
GPS L1 civil	1567 - 1583	-	-	-	-	-	-	-	-	-	-
GSM 1800 (PCN)	1803 - 1882	68	-	62	-	56	-	50	-	44	-
GSM 1900	1850 - 1990	68	-	62	-	56	-	50	-	44	-
3G / IMT 2000	1900 - 1992	68	-	62	-	56	-	50	-	44	-
3G / IMT 2000	2010 - 2025	68	-	62	-	56	-	50	-	44	-
3G / IMT 2000	2108 - 2172	68	-	62	-	56	-	50	-	44	-
Bluetooth/802.11	2400 - 2500	68	-	62	-	56	-	50	-	44	-

NOTE 1 All values listed in this table are valid for the bandwidths in Tables 1 and 2. If measurements have to be performed with different bandwidths than those specified in Tables 1 and 2 because of noise floor requirements, then applicable limits should be defined in the test plan.

NOTE 2 Where multiple bands use the same limits the user shall select the appropriate bands over which to test. When the test plan includes bands that overlap the test plan shall define the applicable limit.

Table 12. RE Test – CISPR 25. Limit lines for Peak and Quasi-Peak detector.

	Fraguanay			Levels in dB(µV))	
Service / Band	Frequency MHz	Class 1	Class 2	Class 3	Class 4	Class 5
	WIT12	AVG	AVG	AVG	AVG	AVG
BROADC	AST					
LW	0,15 - 0,30	90	80	70	60	50
MW	0,53 - 1,8	66	58	50	42	34
SW	5,9 - 6,2	57	51	45	39	33
FM	76 - 108	42	36	30	24	18
TV Band I	41 - 88	48	42	36	30	24
MOBILE SE	RVICES					
СВ	26 - 28	48	42	36	30	24
VHF	30 - 54	48	42	36	30	24
VHF	68 - 87	42	36	30	24	18

Table 13. RE Test – CISPR 25. Limit lines for Average detector.

6.2.4 Measurements parameters

Service / Frequency range		k detectio	on	Quasi-peak detection Average detection			tion		
MHz		Step size	Dwell time	BW at -6 dB	Step size	Dwell time	BW at -6 dB	Step size	Dwell time
0,15 - 30	9 kHz	5 kHz	50 ms	9 kHz	5 kHz	1 s	9 kHz	5 kHz	50 ms
76 - 108									
30 to 1 000									
41 – 88	120 kHz	50 kHz	5 ms	120 kHz	50 kHz	1 s	120 kHz	50 kHz	5 ms
174 – 230									
470 – 890									
171 - 245									
470 - 770	120 kHz	50 kHz	5 ms	Does not apply	Does not apply	Does not apply	120 kHz	50 kHz	5 ms
1 000 - 2 500	120 kHz	50 kHz	5 ms	Does not apply	Does not apply	Does not apply	120 kHz	50 kHz	5 ms
1 567 – 1 583	Does not apply	Does not apply	Does not apply	Does not apply	Does not apply	Does not apply	9 kHz	5 kHz	5 ms
	Hz 0,15 - 30 76 - 108 30 to 1 000 41 - 88 174 - 230 470 - 890 171 - 245 470 - 770 1 000 - 2 500	Hz BW at -6 dB 0,15 - 30 9 kHz 76 - 108 30 to 1 000 41 - 88 120 kHz 174 - 230 470 - 890 171 - 245 120 kHz 470 - 770 120 kHz 1 000 - 2 500 120 kHz	Hz BW at -6 dB Step size 0,15 - 30 9 kHz 5 kHz 76 - 108 9 kHz 5 kHz 30 to 1 000 120 kHz 50 kHz 41 - 88 120 kHz 50 kHz 174 - 230 120 kHz 50 kHz 470 - 890 120 kHz 50 kHz 171 - 245 120 kHz 50 kHz 1 000 - 2 500 120 kHz 50 kHz 1 567 - 1 583 Does not apply Does not not	Hz BW at -6 dB Step size Dwell time 0,15 - 30 9 kHz 5 kHz 50 ms 76 - 108 9 kHz 5 kHz 50 ms 30 to 1 000 120 kHz 50 kHz 5 ms 174 - 230 120 kHz 50 kHz 5 ms 171 - 245 120 kHz 50 kHz 5 ms 170 - 770 120 kHz 50 kHz 5 ms 1 000 - 2 500 120 kHz 50 kHz 5 ms 1 567 - 1 583 Does not annly Does not Does not	Hz BW at -6 dB Step size Dwell time BW at -6 dB 0,15 - 30 9 kHz 5 kHz 50 ms 9 kHz 76 - 108 9 kHz 5 kHz 50 ms 9 kHz 30 to 1 000 120 kHz 50 kHz 5 ms 120 kHz 174 - 230 120 kHz 50 kHz 5 ms 120 kHz 470 - 890 120 kHz 50 kHz 5 ms Does not apply 171 - 245 120 kHz 50 kHz 5 ms Does not apply 1 000 - 2 500 120 kHz 50 kHz 5 ms Does not apply 1 567 - 1 583 Does not apply Does not apply Does not apply Does not apply	Hz BW at -6 dB Step size Dwell time BW at -6 dB Step size 0,15 - 30 9 kHz 5 kHz 50 ms 9 kHz 5 kHz 76 - 108 9 kHz 5 kHz 50 ms 9 kHz 5 kHz 30 to 1 000 41 - 88 120 kHz 50 kHz 5 ms 120 kHz 50 kHz 470 - 890 120 kHz 50 kHz 5 ms 120 kHz 50 kHz 5 ms 470 - 770 120 kHz 50 kHz 5 ms Does not apply Does not apply Does not apply 1 000 - 2 500 120 kHz 50 kHz 5 ms Does not apply Does not apply 1 567 - 1 583 Does not apply Does not apply Does not apply Does not apply	HzBW at -6 dBStep sizeDwell timeBW at -6 dBStep sizeDwell time0,15 - 309 kHz5 kHz50 ms9 kHz5 kHz1 s76 - 1089 kHz5 kHz50 ms9 kHz5 kHz1 s30 to 1 000120 kHz50 kHz5 ms120 kHz50 kHz1 s174 - 230120 kHz50 kHz5 ms120 kHz50 kHz1 s470 - 890120 kHz50 kHz5 msDoes not applyDoes not applyDoes not applyDoes not apply1 000 - 2 500120 kHz50 kHz5 msDoes not applyDoes not applyDoes not applyDoes not applyDoes not apply1 567 - 1 583Does not applyDoes not applyDoes not applyDoes not applyDoes not applyDoes not applyDoes not apply	HzBW at -6 dBStep sizeDwell timeBW at -6 dBStep sizeDwell timeBW at -6 dBStep sizeDwell timeBW at -6 dB0,15 - 309 kHz5 kHz50 ms9 kHz5 kHz1 s9 kHz76 - 1089 kHz5 kHz50 ms9 kHz5 kHz1 s9 kHz30 to 1 000120 kHz50 kHz5 ms120 kHz50 kHz1 s120 kHz171 - 230120 kHz50 kHz5 ms120 kHz50 kHz1 s120 kHz470 - 770120 kHz50 kHz5 msDoes not applyDoes not applyDoes not apply120 kHz1 000 - 2 500120 kHz50 kHz5 msDoes not applyDoes not applyDoes not apply120 kHz1 567 - 1 583Does not applyDoes notDoes not applyDoes not applyDoes not apply9 kHz	HzBW at -6 dBStep sizeDwell timeBW at -6 dBStep sizeDwell timeBW at -6 dBStep sizeDwell timeBW at -6 dBStep size0,15 - 309 kHz5 kHz50 ms9 kHz5 kHz1 s9 kHz5 kHz76 - 1089 kHz5 kHz50 ms9 kHz5 kHz1 s9 kHz5 kHz30 to 1 00041 - 88 174 - 230 470 - 890120 kHz50 kHz5 ms120 kHz50 kHz1 s120 kHz50 kHz171 - 245120 kHz50 kHz5 msDoes not applyDoes not applyDoes not apply120 kHz50 kHz5 ms1 000 - 2 500120 kHz50 kHz5 msDoes not applyDoes not applyDoes not apply120 kHz50 kHz1 567 - 1 583Does not applyDoes notDoes not notDoes not applyDoes not applyDoes not apply9 kHz5 kHz

 Table 14. RE Test – CISPR 25. Measurement parameters.

6.2.5 Test Setup

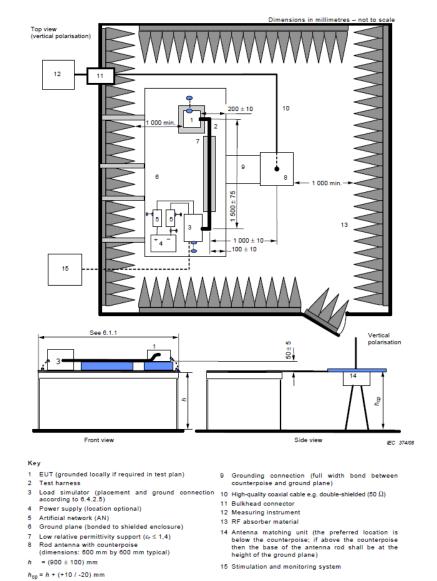
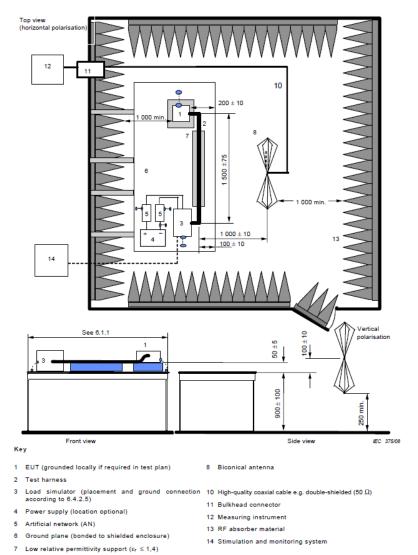



Figure 14. RE Test - CISPR 25. Schematic Test Setup from 100 kHz to 30MHz.

Dimensions in millimetres - not to scale

Figure 15. RE Test – CISPR 25. Schematic Test Setup from 30MHz to 200MHz.

Figure 16. RE Test – CISPR 25. Schematic Test Setup from 200MHz to 1GHz.

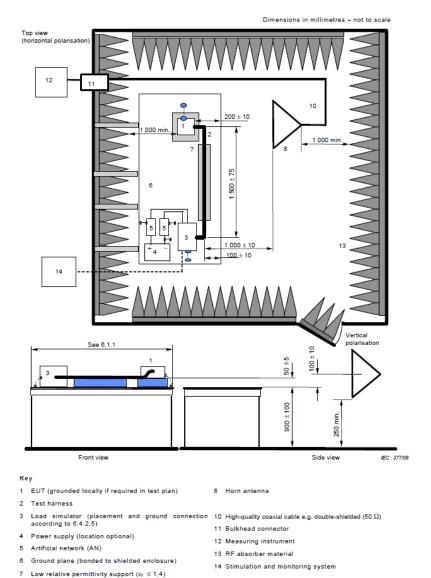


Figure 17. RE Test - CISPR 25. Schematic Test Setup from 1GHz to 2GHz.

Figure 18. RE Test – CISPR 25. Test Setup applied for 12V from 100 kHz to 30MHz.

Figure 19. RE Test – CISPR 25. Test Setup applied for 12V 30MHz to 200MHz.

Figure 20. RE Test – CISPR 25. Test Setup applied for 12V from 200MHz to 1GHz.

Figure 21. RE Test – CISPR 25. Test Setup applied for 12V from 1GHz to 2GHz.

Figure 22. RE Test – CISPR 25. Test Setup applied for 24V from 100 kHz to 30MHz.

Figure 23. RE Test - CISPR 25. Test Setup applied for 24V 30MHz to 200MHz.

Figure 24. RE Test – CISPR 25. Test Setup applied for 24V from 200MHz to 1GHz.

Figure 25. RE Test – CISPR 25. Test Setup applied for 24V from 1GHz to 2GHz.

6.2.6 Test Results

Sample	Operational	Frequency Range	Polarization	Result			
-	mode	[MHz]		PK	QPK	AVG	
		0.15 – 30		PASS	PASS	PASS	
	12V (Class 5 applied)	20 200	Н	PASS	PASS	PASS	
		30 – 200	V	PASS	PASS	PASS	
		200 1000	Н	PASS	PASS	PASS	
		200 - 1000	V	PASS	PASS	PASS	
		1000 2500	Н	PASS		PASS	
щ4		RangePolarizationPKQPKAVG[MHz] $$ PASSPASSPASS $0.15 - 30$ $$ PASSPASSPASS $30 - 200$ HPASSPASSPASS $30 - 200$ HPASSPASSPASS $30 - 200$ HPASSPASSPASS $200 - 1000$ HPASSPASSPASS $200 - 1000$ HPASSPASSPASS $1000 - 2500$ HPASSPASS $1000 - 2500$ HPASSPASSPASS $30 - 200$ HPASSPASSPASS $30 - 200$ HPASSPASSPASS $30 - 200$ HPASSPASSPASS $200 - 1000$ HPASSPASSPASS $1000 - 2500$ HPASSPASSPASS $1000 - 2500$ HPASSPASSPASS $1000 - 2500$ HPASSPASSPASS	PASS				
#1		0.15 – 30		PASS	PASS	PASS	
		20 200	Н	PASS	PASS	PASS	
		30 – 200	V	PASS	PASS	PASS	
	24V (Class 4 applied)	200 1000	Н	PASS	PASS	PASS	
	applied)	200 - 1000	V	PASS	PASS	PASS	
		1000 2500	Н	PASS		PASS	
		1000 – 2500	V	PASS		PASS	

Table 15. RE Test – CISPR 25. Test Results. Sample #1.

6.2.6.1 Ambient noise measurements – 12V Mode (Class 5 applied)

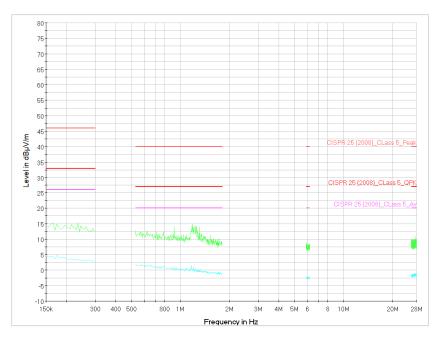


Figure 26. RE Test – CISPR 25. Ambient measurement. From 100kHz to 30MHz . Peak and Average measurements.

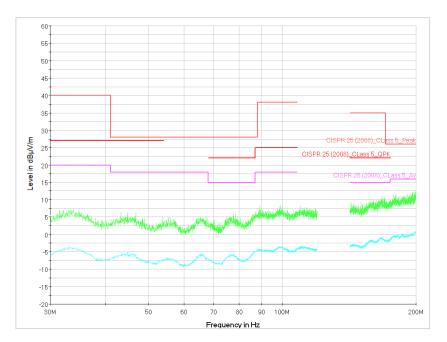


Figure 27. RE Test – CISPR 25. Ambient measurement. From 30MHz to 200MHz . Horizontal polarization. Peak and Average measurements.

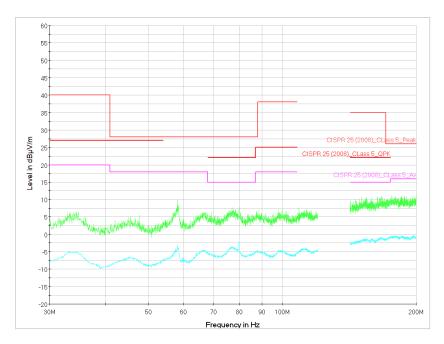


Figure 28. RE Test – CISPR 25. Ambient measurement. From 30MHz to 200MHz . Vertical polarization. Peak and Average measurements.

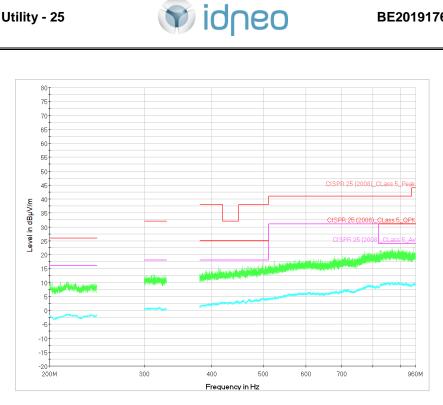


Figure 29. RE Test – CISPR 25. Ambient measurement. From 200MHz to 1000MHz . Horizontal polarization. Peak and Average measurements.

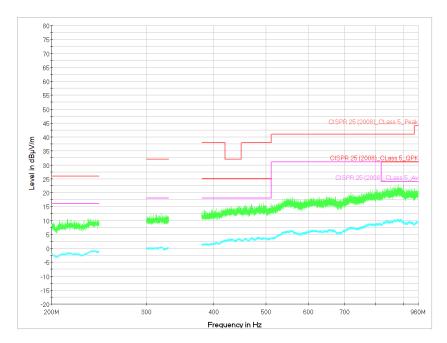


Figure 30. RE Test – CISPR 25. Ambient measurement. From 200MHz to 1000MHz . Vertical polarization. Peak and Average measurements.

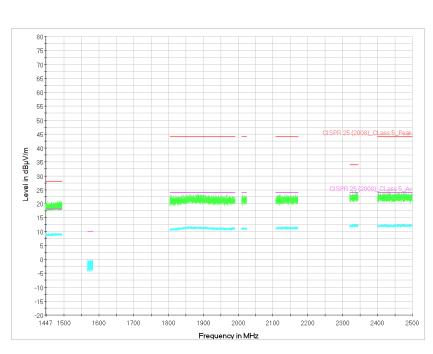


Figure 31. RE Test – CISPR 25. Ambient measurement. From 1000MHz to 2500MHz . Horizontal polarization. Peak and Average measurements.

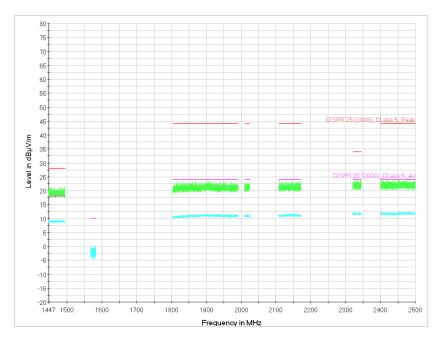


Figure 32. RE Test – CISPR 25. Ambient measurement. From 1000MHz to 2500MHz . Vertical polarization. Peak and Average measurements.

6.2.6.2 Tests Graphs. Sample #1 – 12V Mode (Class 5 applied)

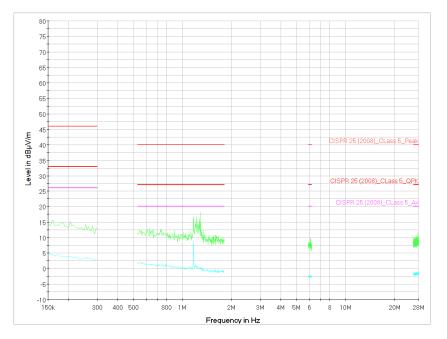


Figure 33. Sample #1 measurement. 12V Mode. From 100kHz to 30MHz Horizontal polarization. Peak and Average measurements. Result: PASS (measurements below limits)

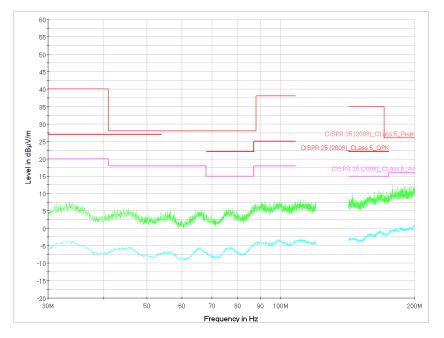


Figure 34. Sample #1 measurement. 12V Mode. From 30MHz to 200MHz Horizontal polarization. Peak and Average measurements. Result: PASS (measurements below limits)



Figure 35. Sample #1 measurement. 12V Mode. From 30MHz to 200MHz Vertical polarization. Peak and Average measurements. Result: PASS (measurements below limits)

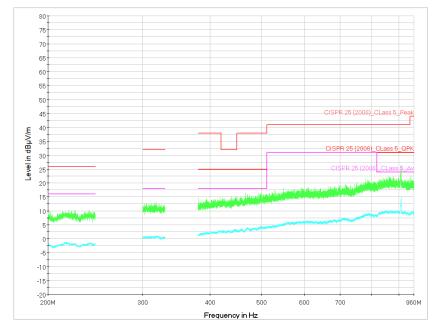


Figure 36. Sample #1 measurement. 12V Mode. From 200MHz to 1GHz Horizontal polarization. Peak and Average measurements. Result: PASS (measurements below limits)

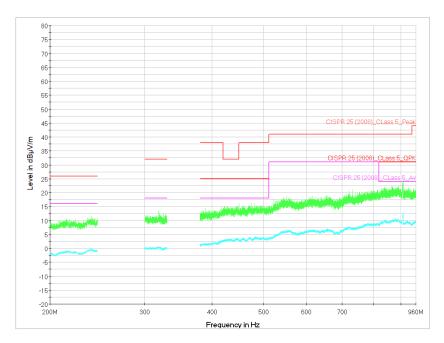
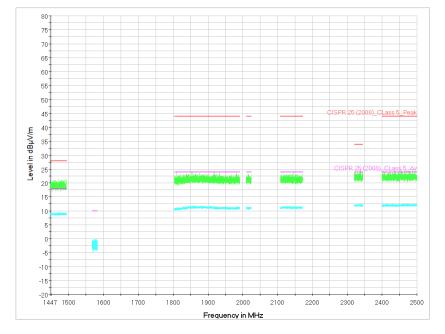



Figure 37. Sample #1 measurement. 12V Mode. From 200MHz to 1GHz Vertical polarization. Peak and Average measurements. Result: PASS (measurements below limits)

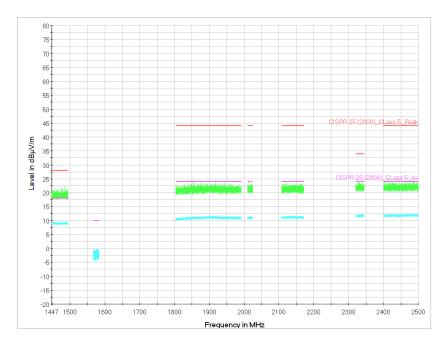


Figure 39. Sample #1 measurement. 12V Mode. From 1GHz to 2.5GHz Vertical polarization. Peak and Average measurements. Result: PASS (measurements below limits)

7 Equipments

		Radiated Emissi	ons	
		SAR1		
ID Equip.	Model	Туре	Manufacturer	Serial Number
562	RE Path	Cable EMI radiated emissions SAR1-CR1	Huber Suhner	562
693	413 7617	Thermohygrometer	RS	C02054
715	SAR1	Semi-Anechoic Room	Albatross- projects	T162
1066	3x1,5m	Conductive Table		
893	NNBM 8124-200	V-Network 5uH+10hm	Schwarzbeck	NNBM8124-047
894	NNBM 8124-200	V-Network 5uH+10hm	Schwarzbeck	NNBM8124-048
907	12V 60Ah540A	Automotive battery	Autoequip Plus	907
973	HL223	Logoperiodic Antenna	Rohde&Schwarz	100258
974	VHBB 9124	Biconic Antenna	Rohde&Schwarz	395
		CR1		
ID Equip.	Model	Туре	Manufacturer	Serial Number
421	ESCI3	EMI Test Receiver	Rohde&Schwarz	100129
691	413 7617	Thermohygrometer	RS	C02055
708	CR1	Control Room	Albatross-projects	T162
930	EMC32 Software	EMS Software	Rohde&Schwarz	Version 8.54.0

	Conducted Emissions								
SR1									
ID Equip.	Model	Туре	Manufacturer	Serial Number					
854	EMC32- E+Software	EMS Software	Rohde&Schwarz	854					
689	608-H1	Thermohygrometer	Testo	45053712					
550	W10.03	CE Path: Cable Conducted Emi	R&S	550					
835	NNBM 8126	LISN CISPR-25	Schwarzbeck	8126D138					
836	NNBM 8126	LISN CISPR-25	Schwarzbeck	8126D139					

8 Glossary

DUT EMC EMI LISN ISO CISPR JASO DV PV VCC GND HW SW ESD RF BNC CAN LIN	Device Under Test Electromagnetic Compatibility Electromagnetic Interference Line Impedance Stability Network International Standard Organization Comité International Spécial des Perturbations Radioélectriques Japanese Automotive Standards Organization Design Validation Product Validation Battery Ground Hardware Software Electrostatic Discharges Radio Frequency Bayonet Neill-Concelman (RF connector) Controller-Area Network (vehicle bus standard) Local Interconnect Network (vehicle bus standard)	
PV VCC GND HW SW ESD RF BNC CAN	Product Validation Battery Ground Hardware Software Electrostatic Discharges Radio Frequency Bayonet Neill-Concelman (RF connector) Controller-Area Network (vehicle bus standard)	